برآورد حجم بهینه نمونه در مدل‌های معادله ساختاری

و ارزیابی کفایت آن برای پژوهشگران اجتماعی

و حیدر قاسمی

چکیده

مدل‌سازی معادله ساختاری به عنوان یک روش چندمتغیره برای نجیبی و تحلیل داده‌ها و تدریج در حال گسترش است. هدف اصلی از نگارش مقاله حاضر، علوه به معرفی عمومی روش‌های برآورد حجم نمونه قابل قبول به ناحیه علمی (توان آزمون قابل قبول و دقت در برآورد پارامترهای آزاد) که پتانسیل حاصل از برآورد پارامترهای آزاد مختلف در یک مدل اعتماد کرد، معرفی می‌باشد. پژوهشگران اجتماعی می‌توانند از آنها برای برآورد حجم نمونه و همچنین ارزیابی کفایت حجم نمونه مورد مطالعه بهره‌گیرند. استفاده از قواعد کلی و به عبارت دیگر، قواعد سرانجامی، برای برآورد حجم نمونه در حال حاضر عمومیت دارند.

اینکه این روش‌ها کاملاً همان یکی از پژوهشگران که در متن حاضر تلاش شده است تا بدان پاسخ داده شود. با این حال، و برخی نواحی از آنها، نظر سنجش به این نیازهای ساختاری برخی نواصع است که پیروی‌های آنها می‌تواند پژوهشگران را به نتایج نادرستی هدایت کند. یکی از مهم‌ترین ایرادهای استفاده از این روش‌ها آن است که محقق ممکن می‌تواند مطمن باشد در شرایط خاصی که مدل خود را آزمون کرد است آیا حجم نمونه‌ای که برای برآورد پارامترهای مختلف از یک مدل آزمون گرفته مدل از سوی دیگر مورد تحلیل قرار گرفته، از بین این‌ها کافی یک نتیجه‌گیری است به شکلی که نمونه‌گیری به‌هیچ‌گاه هنگامی که مدل تدوین شده به همراه تعداد متغیرهای آنها، تعداد پارامترهای مدلی پیچیده است و مقررات‌های نظیر نرم‌افزار چندمتغیره نقص می‌شود. به‌طوری‌که پژوهشگران ممکن است از روی گیاه کلیه و علل دیگر مورد تحقیق قرار گرفته، از جمله روش‌های ممکن است بهره‌گیرند.

مقدمه کلیدی: حجم نمونه، مدل معادله ساختاری، روش ساتورا-ساریس، روش مونت-کارلو

1. V.ghasemi @ ltr. ui. ac. ir
2. Rules of thumb
3. Satora-Saris Method
4. Monte Carlo Method

(تاریخ دریافت: 15/1/1390، تاریخ پذیرش: 2/5/1391)
طرح مسئله

کتاب‌هایی که درباره مدل‌سازی معادله ساختاری در ایران ترجمه یا تألیف شده اند کمتر به بعث حجم بهینه نمونه برای یک مدل و مجموعه داده‌های خاص پرداخته اند (به عنوان نمونه رجوع کنید به: هومن، 1384: 1385: کلانتری، 1388). همچنین در مقاله‌هایی که بر همین مبدأ به تجزیه و تحلیل داده‌ها پرداخته کمتر به توجیه دقیق درباره حجم مورد مطالعه شان دست زده اند (به عنوان نمونه رجوع کنید به: رژیمی و رسول‌زاده اقدم، 1381: 1382 و آمیرکیفر، 1383: اقلاوی و زاهدی، 1384). علاوه بر آن در بسیاری از آثار منتشرشده به زبان انگلیسی و زیر عنوان مدل‌سازی معادله ساختاری و یا نظریه آن به ارائه برخی از قواعد کلی نظیر حجم حداکثر نمونه (مولر، 2005: 15)، حجم نمونه به ارائه هر پارامتر آزاد تعريفشده در مدل تدوین‌شده (مولر، 1996: 26) جسم نمونه به ارائه هر متغیر مشاهده شده سمت‌گیره‌ای قرار گرفته در کادر (شوموخار و لومیکس، 1388: 66-64) اکتشاف شده است.

سازی معادله ساختاری تحت تأثیر عوامل که حجم نمونه در مدل توجه به این متعدد نظرات پوزش زوزی متمایز‌سازی مورد مطالعه در فرضی پذیرفته (برق‌ار 3) عنوان مثال 1 بودن نرمان بودن چندمتغیره، روش پارامتر برآورد از (به ایل ما و پیچیدگی مدل (تعداد معرفی 2) ADF)

پارامترهای آزاد در مدل تدوین‌شده قرار می‌گیرد و همچنین اینکه پارامترهای برآوردشده، آزمون فرضیه و برآورد شاخته‌بر رازش کلی مدل تحت تأثیر حجم نمونه قرار می‌گردد، شرورت

دارد تا با پرداختن دقیقتر به موضوع طرح شده، پژوهشگران و به اویزه پژوهشگران اجتماعی را به این موضوع توجه داد تا در صورتی که آنان بر می‌اندازند مدل‌سازی معادله ساختاری به گردآوری داده‌ها دست زده و به تجزیه و تحلیل آنها می‌پردازد به برآورد حجم نمونه توجه ویژه‌ای داشته و با بهره‌گیری از معیارهای تعريفشده برای مدل‌سازی معادله ساختاری و تحلیل‌های چندمتغیره به برآورد دقیقتری از حجم نمونه دست زند. به منظور عینیت به‌خیصیک به باعثه‌ا در مقاله حاضر از یک مثال بر مبنای یک مدل معادله ساختاری متشکل از مدلی ساختاری با چهره ساز و چهره مدل عاملی مربوطه اول که در مجموع سیزده متغیر مشاهده شده و در بر می‌گیرند بهره گرفته شده است. برای انجام محاسبات نیز از استفاده شده است. حاکم درست‌نمایی به عنوان عمومی‌ترین روش برآورد

1 - Maximum Likelihood.
2 - Asymptotic Distribution Free.
پارامترهای آزاد در مدلسازی معادله ساختاری شناخته می‌شود. مهم‌ترین پیش‌فرض‌ها این است که وجود متغیرهای مشابه هدف پوسته و برق‌وری متغیر نرم‌ال‌پوسته بودن چند‌تیره‌ای است هرچند تا حدی نسبت به نقش مفروضه مافا و با فرض افزایش حجم نمونه مقاوم است. در میان حاضر فرض برآورد نیاز به پژوهشگر در برآورد پارامترهای آزاد از این روش استفاده است.

آنچه دکتر آن در اینجا یافته است این است که به‌خاطر طرح‌شده در متن حاضر علاوه بر مباحثی است که برای برآورد حجم نمونه از یک جامعه آماری مطرح است، تأثیرگذاری عواملی نظیر پراکندگی متغیرهای مورد مطالعه، حجم جمعیت آماری، دقت برآورد پارامترها و صحیح اطمینان مورد نظر برای آزمون فرضیه‌ها صفر که مستقیماً حجم نمونه را تأثیر چرای قرار می‌دهد. هنگامی که پژوهشگر مایل است نسبت به متغیر کیفی، میانگین یک متغیر کیفی و یا همبستگی میان متغیرهای مختلف را برآورد کند ممکن است یک نمونه 300 نفری از یک جمعیت آماری 300،000 نفری کاملاً قابل قبول به‌نظر رسد. این در حالی است که برآورد پارامترهای مختلف در مدلسازی معادله ساختاری به‌نحوی که دارای دو ویژگی ثابت و اعتبار باشند به‌نحوی که بتوان به آنها اطمینان کرد نیازمند ملاحظاتی فراز از ملاحظات معمول است.

می‌نایی نظری اهمیت برآورد حجم به‌نحوی نمونه‌گیری تایید کرده که به عنوان یک طبقه‌بندی روش‌شناختی در پژوهش‌های اجتماعی به‌پایین، در مطالعات کیفی، هدف پژوهشگر (اغلب و نه همبستگی) تعیین مقدار پارامترهای جمعیت آماری است. و باز اغلب، از آنجا که جمعیت‌های آماری مورد مطالعه در پژوهش‌های اجتماعی به‌لحاظ تعداد و واحدهای تحلیل به‌اندازه‌ای بزرگ حسند که امکان گردش‌های داده‌ها برای تعیین مقدار پارامترها از کل جمعیت آماری (سرشماری) به دلایلی نظری محدودیت در نیروی انسانی، مانند

می‌لای و زمان، وجود ندادند، پژوهشگران از تعیین مقدار دقیق پارامترها بر مبنای سرشماری صرف نظر کردند و به برآورد یا تخمين1 آن پارامترها با استفاده از آمارهای نمودارهای2 رضایت می‌دهند. چنین رضایتی به این دلیل مهم حاصل می‌آید که برآورد پارامترها با استفاده از آمارهای نمودارهای اطمنان بالا (معمولاً 95%) و خطای اندازه‌گیری نزدیک به پارامتر واقعی با حجم نمونه بیمار کوچکتر از حجم جمعیت آماری به شرط رعایت میزان‌های علمی نموده‌گری امکان‌پذیر است. به‌لحاظ نظری، این امکان وجود دارد که با حجم نمونه‌ای که در مقایسه با

1 Estimation
2 Estimation

حجم جمعیت آماری نسبت به سیاسی کوچکی است، پارامترهای جمعیت آماری (توجه
نسبت به درصد، میانگین، گرافیک، ضرایب همبستگی، گردش، دوگانگی ساده
با چندگانه و ضرایب تأثیر مستقیم و غیرمستقیم، وزن‌های گرایسونی گام‌و
بتا در یک مدل مطالعه ساختاری یا پارامترهای آن با دو مدل علمی و تئوری
آن) با ارتباط (تفاوت مقدار برآورده شده برای یک پارامتر واقع
آن در جمعیت آماری) انده و به لحاظ کاربردی قابل قبول، برآورد شود
(داتالو، 2008: فصل اول). آنچه که در این بحث حال اهمیت قرار اول است یک
مقدار خطایی است که به هنگام برآوردن پارامترها قابل قبول در نظر
گرفته می‌شود (مثل اینکه وقتی درصدی را برآورد می‌کنیم تا 5% کمتر یا بیشتر
برآورده قابل قبول باشد و یا وقتی ضریب گرایسونی چندگانه ای را برآورد
می‌کنیم تا 0/02 کمتر یا بیشتر پذیرفتنی باشد). هرچه این خطای قابل قبول
در یک سری کمتر باشد نیاز به حجم نمونه افزایش می‌یابد و از طرفی
سطح اطمنانی است که به هنگام برآورد یک پارامتر انتظار داریم که در آن
سطح پیش فرضی برای پارامتر به‌دست آید.
نکته‌ای اهمیتی به لحاظ نظری آن است که برای هرکدام از انواع پارامترها،
روش محاسبه حجم به‌نمونه نمونه برای یک سطح اطمینان و مقدار خطای مشخص،
mتغییر است. این موضوعی است که در اغلب متنون‌هایی نمونه‌گیری می‌توان با
آن برخوردار کرد (به عنوان نمونه دو روش کنی: کوکرک، 1977؛ کانویو، 1967؛
دیمگ، 1950). به عنوان مثال وقتی قرار است نسبت متقابل مسافة می‌شود
که برد از نرم افزارهای رایانه‌ای برای انجام محاسبات اطمینانی استفاده می‌شود
1 برآورد حجم نمونه در تحلیل‌های چندمتغیره ما همان‌طور که تحلیل تک
متغیره‌ها درون‌متغیره است. چنان وضوحی با دلیل تعداد پارامترهای است که
پژوهشگر به نیاز به برآورد آن ماست. به عبارت دیگر، وجود انواع متغیرهای
کمی و کیفی در یک تحلیل چندمتغیره، شکل‌های توزیع متغیرهای با آمار
جمعیت آماری مشابه‌است از توزیع نرمال برای برآورد پارامترها و
پیچیده‌تر می‌خشد. به‌طور معمول، چنان وضوحی نیاز به پیش‌بینی تحلیل‌های
چندمتغیره‌ها به حجم نمونه را طلب می‌کند (هر و دیگران، 2009: 754).
برنامه‌های شرکت نرم‌افزار برای استفاده از روش
دلیل با درستی دانستنی که برناوارهای پارامترها در
علت مدل‌سازی معادله‌ها ساختاری است. روش‌های دانستنی درست
نیازی که عملیت روند برآورد پارامترها در مدل‌سازی معادله‌های است

امکان برآوردن حجم نمونه Sample Power
در 120 موقعیت پژوهش‌نامه‌های چندمتغیره، و چند متغیره تعیین شده است.
به این دلیل عمومیت یافته است که با استفاده از این روش میتوان فواصل اطمینان یاErrored در 2 یا اینجا اطمینان مشخص به انجام رسند. تشکیل داد و آزمون‌های آماری را با سطوح اطمینان مشخص به انجام رساند. این شرط به ویژه در پژوهش‌های اجتماعی به احتمال زیاد میتواند نقش شود.

با این حال، روش‌های کامل درستنمایی نسبت به نقش رمادا بودن چنین می‌تواند با این شرط آشکارانگ شاید مترود شود به منظور به دست آوردن آزمون‌های قابل اعتماد پارامترهای آزاد در یک مدل به حجم نمونه بیشتری نیاز است (پایه توضیح بیشتر رجوع کنید به: کلین، 2010).

در نهایت اینکه هرگونه برآورد حجم حداقل حجم نمونه به لحاظ کاربردی ساده تر است اما موضوع بسیار اساسی به لحاظ روش‌شناسی این است که چنین بتوان برآورد پارامترهای مورد نظر در یک پژوهش را با حجم نمونه کمتری که از هر واحد نمونه اخذ شده داده‌های دقیقتری گردآوری شده است پژوهشگر را به نتایج واقعی خود رساند در مقایسه با موقعیتی که به‌طور بالا بودن حجم نمونه و اندک بودن نیروی انسانی با تجربه و قابل اعتماد نمی‌توان به داده‌ها و نیازمند برآورد انجام شده اطمینان زیادی داشته. اگر بتوان در یک موقعیتی پژوهش با 250 واحد نمونه تصادفی به سوالات تحقیق پاسخ داد و یا فرصی‌های تحقیقی از آزمود گردآوری داده‌ها از 500 واحد نمونه تصادفی به‌طوری‌که نه تنها نورما به دقت بیشتر در نتایج نخواهد انجامید که در صورت صحت (به‌طوری‌که از طرف پژوهشگر یا پاسخ‌گو) میتواند به ارتباط بیشتر در برآورد پارامترهای بین‌جامد.

طرح یک مثال

در مثال طرح شده، چهار عامل شامل زمینه اجتماعی - اقتصادی خانواده، آگاهی سیاسی، آزادی‌خویش و مشترکت سیاسی با سیریه معنی تعیین شده‌اند. تحلیلات پیر و مادر و همچنین منزیت شغلی پدر و مادر به عنوان معنی‌های زمینه اجتماعی - اقتصادی‌های خانواده، آگاهی از تاریخ سیاسی، مفاهیم سیاسی و ساخت سیاسی به عنوان معنی‌های آگاهی سیاسی، آزادی‌خویش اجتماعی، سیاسی، و سیاسی به عنوان معنی‌های آزادی‌خویش و مشترکت در انتخابات، مشترکت سازمان‌یافته، داشتن ارتباطات سیاسی و پیگیری اخبار به عنوان معنی‌های مشترکت سیاسی تعیین شده‌اند. نمره هریک از واحد نمونه برای هریک از معنی‌های با بهره‌گیری از یک مقیاس اندازه‌گیری با حداقل نمره 1 و حداقل نمره 10 اندازه‌گیری شده است. مدل تدوین‌شده در شکل‌های (1) و (2) به تصویر درآمده است. در هر مدل عامل، بار عملی یک معنی، به عنوان متغیر مرجع 1 یا معنی‌های مشترکت 2 به مقدار 1 ثابت شده است. مدل تدوین‌شده در مجموع شامل 31 پارامتر آزاد و درجه آزادی 60 است.

1 - Reference Variable
2 - Marker Indicator
شکل (1) مدل معادله ساختاری برای تبیین مشارکت سیاسی

مدل تدوین شده با استفاده از نمادگذاری عمومیت یافته در مدلسازی معادله ساختاری به شکل شماره (2) درآمده است:

شکل (2) مدل تدوین شده با جایگذاری نمادهای عمومیتیافته در مدلسازی معادله ساختاری
با فرض اینکه پژوهشگر مایل به برآورد پارامترهای آزاد برای یک جمعیت آماری با ۲۰۰۰ عدد است چند واحد نمونه می‌تواند وی را نقطه‌سازد که اولاً با دقت بالایی این پارامترها برآورد شوند و ثانیاً به هنگام آزمون فرضیه‌های صفر مبتنی بر براورد یک بودن هرکدام از پارامترها با مقدار صفر، از توان آماری حداکثر بروکاردار است.

از آنجا که حجم نمونه بر توان آماری آزمون و دقت برآورد پارامترهای آزاد در مدل تدوین‌شده اثر می‌گذارد برآورد حجم بهینه نمودن نیاز به همین دو متغیر استوار است. توان آماری، به عناوین احتمال رد فرضیه صفر هنگامی که آن فرضیه واقعاً اشتباه است تعیین می‌شود. عمومی‌ترین مقدار برای ارزیابی توان آزمون آماری از کوهن (1988) تحلیلی بر توان آماری علوم رفتاری _ اخذ شده است. کومن مقدار ۸۰/۰ و/ه عنوان نقطه برش برای تصمیم‌گیری درباره توان یک آزمون خاص در نظر گرفته است (کوهن، 1988:10-4). برای این اساس مخاطره مواجهه با خطای نوع دوم تا حدی کمتر ۲۰٪ پذیرفته شده است. دقت برآورد پارامتر نیز به معنای توانایی برآورد مدل انجام می‌شود به‌طور مشابه در انعکاس مقادیر واقعی این پارامترها در جمعیت آماری است. دقت را می‌توان بر مبنای اریب مقادیر برآوردشده برای پارامترها و خطای معیار آن‌ها اندازه‌گیرد.

روش‌های بیشتر شناخته‌شده برای برآورد حجم بهینه نمونه شامل روش ساتورا، ساریس و روش مونت کارلو۱ می‌شوند که اولی بر توان آزمون آماری و دومی بر دقت برآورد پارامترها متمرکز هستند. هر چند این دو متغیر به‌طور جداگانه هم‌زمان بر دقت و دقت در مدل‌های آماری خاص منجر به توافق ضریب بر اساس هم‌زمان می‌شود. اما قبل از طرح آن‌ها مناسب است که اندکی درباره قواعد کلی یا معیارهای سرانگشتی۲ برای حجم نمونه اشاره کنیم.

قواعد کلی با معیارهای سرانگشتی

تعداد متغیرها و پارامترها در اغلب مدل‌های معادله‌سازی آماری چنین برآورد حجم بهینه‌ای را در مقایسه با موقعیتی که پژوهشگر با تعداد محدودی از متغیرها و پارامترها در پژوهش خود مواجه است موضوعی دشوار و پیچیده می‌کند. چنین دشواری و پیچیدگی در برآورد حجم نمونه برای یک مدل در جمعیت آماری خاص منجر به توافق ضریب بر اساس هم‌زمان آن‌ها را غیرمطمئن اریابایی کرد. این قواعد ریشه در مطالعات شیعه‌سازی مونت‌کارلو دارد. روش‌هایی که مبتنی بر نمونه‌های تصادفی مکرر از جمعیت آماری مفروض با پارامترهای شناخته‌شده است. این مطالعات عمداً توسط بومسما (1982)، اندرسون و گربینگ (1984) و هوگلند و بومسما (1998) قرار داده که مورد اخیر

1 Monte Carlo Method.
2 Rules of Thumb.
خود به فرآیند سی وچهار شیب‌سازی مونت کارلو پرداخته و نشان داده است که چگونه حجم نمونه در موقع‌های مختلف بر اساس نتایج اثر می‌گذارد. به طور کلی از آن جا که هرچه حجم نمونه بزرگتر باشد، هزینه‌های مادی و زمانتی گردآوری داده‌ها افزایش می‌یابد پرسیار بسیار کلیدی آن است که حجم نمونه‌ای که اندازه‌بندی و همکاران (2001) با بررسی نمایشگر مختلف در اینباره به این نتیجه رسیده‌اند که دیدگاه‌ها درباره اینکه حداکثر حجم نمونه‌ای که اندازه‌بندی متفاوت است، این موضوع است که در ادامه به آن پرداخته شده است.

هر و همکاران (2009) نشان داده‌اند که بنیت متغیر بر حجم نمونه در مدل‌سازی معادله‌های مختلف تأثیرگذار است؛ (1) پیچیدگی مدل (2) روش‌برآورد پارامترهای آزاد (3) برقراری یا عدم برقراری نرم‌البودن چندبی‌گر (4) حجم داده‌های مفید (5) توزیع واریانس خطا در میان معرفی‌ها، واضح است که این متغیرها علاوه بر عوامل تأثیرگذار بر حجم نمونه توزیع بزرگی یا چوگانی جمعیت آماری است.

ادیبات مدل‌سازی معادله‌های مختلف نشان می‌دهد که بسیاری توجه در مباحث مرتبط با حجم نمونه به پیچیدگی مدل اختصاص بافته است. در مباحث مرتبط با پیچیدگی مدل توجه اصلی عمداً مربوط به تعداد متغیرهای مشاهده‌شده با معرفی‌ها، تعداد سازه‌ها و تعداد پارامترهای آزاد برای برآورد است.

مولر (1996) برای تعیین حجم نمونه از نسبت حجم نمونه به پارامتر آزاد برای برآورد استفاده می‌کند. این حاقل این نسبت را 5 به 1، حد متوسط آن را نسبت 10 به 1 و حد بالای آن را نسبت 20 به 1 عنوان می‌کند. برای اساس می‌توان برای مدل تدوین‌شده (شکل‌های 1 و 2) با توجه به وجود 32 پارامتر آزاد برای برآورد حداکثر حجم نمونه را 160، حد متوسط آن را 320 و حد بالای آن را 460 واحده برآورد کرد. نسبت‌های متفاوتی که ذکر می‌شود به بیان نرم‌البودن چندبی‌گر ارتباط دارد. برآورد پارامترهای جمعیت آماری بر مبنای قواعد حاکم بر توزیع نرم‌البودن انجام می‌شود. هنگامی‌که اطلاعاتی تحتی احتمال آن را مشخص کنم که از فاصله اطمینانی که برای یک پارامتر به دست می‌آید صحیح باشد و تا چه اندازه‌بندی واقعی جمعیت آماری از دامنه برآورد شده خارج شود. با توجه به اینکه هرچه حجم نمونه بزرگ‌تر باشد توزیع میانگین‌های نمونه برای پارامترهای مشابه یک توزیع نرمال می‌باشد که نسبت‌های 20 به 1 این اطلاع از آزمونای فاصله داشته باشند به این حال توزیع متغیر مورد مطالعه در جمعیت آماری به شدت از توزیع نرمال جدا می‌شود.

1- Multivariate Normality.
نرمال بودن چندمتعیه برای متغیهرها مورد مطالعه در جمعیت آماری برقرار باشد یا از آن انحراف کلی داشته باشد. لوهلین (2004) در بحث خود برای حجم نمونه در مدل‌های عاملی به پیچیدگی مدل با تأکید بر سه متغیهر مشاهده شده تعداد سازه‌ها، تعداد معنی‌های میانه و میزان اشتراک آتی را داشته است. وی به این نتیجه رسیده که در مدل‌های عاملی با میزان‌های اشتراک بالا، تعداد کم عاملی و تعداد نسبتاً بزرگ معنی‌ها برای هر حجم نمونه 100 نیز نتایج پایدار و قابل اعتمادی با به بار می‌آورد. این در حالی است که در صورت وجود میزان‌های اشتراک پایین، تعداد یادداشت‌های عاملی و تعداد کم معنی‌ها برای هر عاملی این حجم بین 200 تا 500 واحد افزایش می‌یابد.

نکته جالب اهمیت در این باره آن است که تعداد عاملی و تعداد معنی‌ها در مدل تدوینشده کاملا مشخص است. این در حالی است که میزان‌های اشتراک هریک از معنی‌ها در مدل‌های عاملی را قابل انجام مطالعه نهایی مشخص نبوده و تنها می‌توان براساس مطالعات پیشین بر مبنای مدل‌های عاملی یکسان و یا داده‌های حاصل از مطالعات مقدماتی این میزان‌های اشتراک را برآورد کرد. برآوردی که نرمایی با نتایج نهایی حاصل یکسان نخواهد بود. به این ترتیب چنانچه محقق بخواهد اطمینان بالاتری نسبت به حجم نمونه خود برای آزمون مدل با توان کافی داشته باشد مناسب است که میزان‌های اشتراک را حاصل در سطح متوسطی برآورد کند. به این ترتیب و براساس معیار لوهلین و با توجه به تعداد سازه‌ها و معنی‌ها در حد متوسط در مدل مفروض (شکل‌های 1 و 2) حجم نمونه را بین 300 تا 400 واحد برآورد کرد.

اصل کلی حاکم بر رابطه نرمال بودن چندمتعیه و حجم نمونه آن است که هرچه انحراف از نرمال بودن چندمتعیه بیشتر شود نسبت پاسخگویانی که برای برآورد هر یک از پارامتر مورد نیاز است افزایش می‌یابد نسبت مورد پذیرش برای هر حداکثر سطح احتمال 15 نمونه نیاز داریم. اهمیت بالا رفت حجم نمونه در هنگامی که پیش‌فرض نرمال بودن چندمتعیه نقش می‌شود در کاهش خطای نمونه‌گیری به اندازه‌ای است که بتوان به نتایج حاصل از برآورد پارامتر اطمینان کرد.

تعیین حجم‌های نمونه 160 تا 640 برای مدل تدوین‌شده و مفروض باید توجه به عدم تغییر تعداد معنی‌ها، عاملی و پارامترهای آزاد به عوامل مختلف مرتبط با این حساب داشته و بر اساس پیش‌فرض برگزاری آزمون نرمال بودن چندمتعیه است. حجم نمونه 160 در وضعیتی است که نرمال بودن چندمتعیه برقرار است.

2. Communality
در حالتی که حجم نمونه 640 برای موقعیتی است که داده‌ها از نرمال بودن چندمگی‌فرش‌های زیادی گرفته‌اند هرچند ممکن است نرمال بودن تحلیل‌گری یا دومتگیره برای پاسخ‌ها از معرفی‌ها برقرار باشد.

حجم نمونه همچنین تابع روش برآورد است. مطالعات بیش‌سازی نشان داده است که تحت شرایط آماری به لحاظ برقراری نرمال بودن چندمگی‌فرش‌های مدل اندازه‌گیری کوهی به لحاظ کوکین بودن خطای اندازه‌گیری و روهی و نمودن با داده‌ها مقدار حتی با حجم نمونه‌ای به اندازه‌گیری 50 واحد نیز می‌توان به نتایج بانیت و معتبر دستیابی (هر و همکاران، 2009). مک کالوم (2003) نشان داده است که هرچه از این شرایط ایفای آن فاصله گرفته‌شده و خطاهای نمونه‌گیری بالاتر رود حداکثر حجم نمونه برای برآوردهای یپا و معتبر از پارامترها افزایش می‌یابد.

از طرف دیگر، با توجه به شناختی که حجم نمونه برآوردشده با مقدار مصرف‌شده و در حالتی که پارامترها به لحاظ آماری تفاوت معناداری با صفر پیدا می‌کنند از طرف دیگر شاخه‌های نیوکوپی برآوردهای مشابه مدل ضعیفی را نشان می‌دهد. کلووی (1998) تأکید کرده است که مدل‌های مدل‌های ساختاری اکتیکی است که بر پایه نمونه بزرگ قرار دارد تا کار باشد. اطلاعاتی در مورد حجم نمونه برای توسط نوبتگیری متفاوت تفسیر شده است. لوهلین (2004) نیز برای موضوعی که روش برآورد حداکثر درستنمایی بر حجم نمونه برآورد منطقی است تفسیر اصطلاح «برآورد» را مشکل دانسته و ضمن تاکید براینکه نمی‌توان عدد دقیقی را عنوان کرد که کمتر از آن را یک وضوحی نسیب به بدانیم می‌پذیرد که حجم نمونه کمتر از 100 نمونه‌ساز و حجم های بالاتر از 200 مطالعه است. با این حال حجم نمونه از نظر وی بیش از همه به عنوان سیستم به توان والایه به هنگام آزمون مدل است، لازم است محقق با اطمینان بتواند مدل را که نادرست شده را دکل. حجم نمونه بالا با تأثیری که بر توان آزمون می‌گذارد این مانند خ از برای محقق‌فرای در می‌کنید.

مر و همکاران (2009) با تحلیل بیش‌سازی طرح‌شده پیرامون حجم نمونه در مدل‌های مدل‌سازی ساختاری بخش‌هایی یا برای حداکثر حجم نمونه در شرایط مختلف طرح کرده‌اند:

- حداکثر حجم نمونه 100 واحد برای مدل‌هایی که شامل 5 یا تعداد کمتری سازه مستند و حجم نمونه با تعداد بیشتر از 3 معرف انداده‌گیری بیشتر. از نظر اشکال نور ار ار نور 0/60 و بالاتر است.

- حداکثر حجم نمونه 150 برای مدل‌هایی که با 7 سازه یا کمتر است و میزان اشکال

در حد متوسط (حدود 0/5) بدون سازه‌های فروم‌پلاس (سازه‌های فروم‌پلاس) که دارای

1 Large Sample Technique.
2 Underidentified Constructs.
1 بای ۲ معرف مستند.

احداشت حجم نمونه ۳۰۰ برای مدل‌هایی که با ۷ وزنه یا کمتر، میزان اشتراک پایین در مدل‌های عامی (کمتر از ۴۵/۰ و وزنه‌ها فرض شده‌اند) باید نزدیک به ۵۰ برای سازه‌هایی با تعداد سازه‌های زیر ۹۸ باشد.

علی‌الله بر موارد فوق لازم است که در موقعیت‌های زیر حجم نمونه باز هم افزایش نماید.

1. نقطه شدن پیش‌فرض نماد بودن چندمیتریت
2. هنگامی که داده‌های معقوق بیش‌اندازه کم باشند.
3. اگر از توجه شود که در صورت تحلیل چندگروهی هریک از گروه‌ها با یکدیگر شرایط ذکر شده را دارا باشند.

در رابطه با موضوع سادگی یا پیچیدگی مدل و حجم نمونه نیز اصل کلی عنوان بر باشند. برای آزمون آن به حجم کوچکتری از نمونه کننده که حجم مدل ساده و اندازه‌بندی می‌شود یا متغیرهای مشاهده شده گفت ممکن است. می‌توان یک مدل بیشتری شود به حجم بیشتری از نمونه نیاز است. علاوه بر این، می‌توان سه متغیر دیگر را در پیچیدگی مدل‌بندی تعداد متغیرهای آماری می‌توان یک مدل بیشتری شود مدل پیچیده‌تر داشت. ممکن است حجم نمونه از حجم حداشت حجم نمونه مطلوب افزایش یابد.

1. از این مدل باید از عناصر غیرتکراری در ماتریس واریانس-کوواریانس بیشتری شود. بیشتری از متغیرهای بارآوردی از تکراری برخوردار خواهد شد به نحوی که گردآوری داده‌های جدید و برآورد مجدد پارامترها تفاوت معناداری را در مقایسه با اولیه پارامترها نشان ندهد.

2. داده‌های معقوق و حجم آنها و همچنین نحوه برخورد با این نوع از داده‌ها توسط پژوهشگر از دیگر متغیرهایی است که حجم نمونه را تحت تأثیر قرار می‌دهد. نتایج کلی می‌باشد برای تعداد این عناصر از تکراری در ماتریس واریانس-کوواریانس بهترین انتخابی برخوردار خواهد بود که از دستورالعمل انتخابی از نمونه‌های مستند متوسط واریانس خطای معرفی‌ها در مدل‌های اندازه‌گیری از عوامل مهم و مؤثر بر حجم پرداخته است. این مفهوم مرتبط با میزان اشتراک است. مقداری که از مربع بارهای عامی استاندارد در یک مدل عامی حاصل می‌شود و بیان کننده نسبتی از واریانس معرف است که توسط مدل تبیین می‌شود.

1 Absolute Minimum Sample Size.
هرچه میزان اشتراک کوچکتر (به‌ویژه کوچکتر از 5٪) و بنابراین واریانس خطا برای گروه شود برای رسیدن به نتایج در برآورد پارامترها و همگرایی مدل نیازمند حجم نمونه بالاتری هستند. این مسئله به‌ویژه هنگامی تشدید می‌شود که میزان‌های اشتراک کوچک با تعداد یکی یا دو معروف برا یک سازه همراه شود.

با این حال، در نظر گرفتن این قواعد کلی که عمده‌ای بر اساس مطالعات مونت کارلو قرار دارد به تجربه ثابت کرده است که کافی تا حد زیادی با معیارهای دقیقتر برآورد حجم نمونه توزیع مطالعات قرار گیرند باعث برآورد قابل اعتمادی از پارامترها می‌شود با خیر.

با وجود اینکه به‌هرگزی از معیارهای سرانگشتی دارای امتیاز‌هایی نظیر سهولت و قابل قبول بودن حجم نمونه در اغلب موارد برای برآورد پارامترهای استادی این می‌تواند از این معیارهای به‌عنوانی دارای ایرادهای نیز هست که استفاده از معیارهای دقیق‌تر برای ارزیابی کفايت حجم نمونه را ضروری می‌سازد. این ایرادها عبارتند از:

1. محیط اغلب (همواره در این ترتیب بسیار خواهد بود که آن حجم نمونه وي به اندازه‌گاهی برای برآورد قابل اعتمادی از پارامترها بزرگ بوده است با خیر.

2. حجم نمونه در مطالعاتی که تحلیل داده‌های آن بر مبنای مدل‌سازی معادله ساختاری قرار دارد (همچون سایر مطالعات) را نمی‌توان به‌طور کلی و بر مبنای یک مقدار مشخص تعیین کرد. به عبارت دیگر نمی‌توان اظهار کرد که حجم به‌همه نمونه‌برای این مدل 120 است. چرا که هرکی از پارامترها برای برآورد قابل استفاده نیازمند حجم منفی‌تری از نمونه می‌شود.

4. برآورد حجم نمونه، وابسته به موقعیت‌های ویژه برای هر پژوهش و خصوصاً مدل تدوین شده است. استفاده از قواعد کلی به نوعی نادیده انگاشته شده است.

روش ساتورن-سارس

این روش که بر مبنای توان آزمون تفاوت مربع‌کای (یا خی) در تعیین وجود...
عدد وجود خطای تدوسی و مرتبی با یک پارامتر منفرد قرار دارد اولین بار توسط ساتو و ساریس (1985) مورد استفاده قرار گرفت و امروره از شناخته شده ترین روش‌ها در برآورد حجم نمونه و ارزیابی کفایت آن در مدل‌سازی معادله ساختاری به شمار می‌رود. در هر حال، این روش به تعداد پارامترهای آزاد در مدل تدوینشده نیازمند تکرار برای تعیین توان آزمون آماری برای مقدار صفر است. که عنوان که می‌تواند کاربردهای آزمون تفاوت مربع کی متقاپس دو پارامتر یکسان (متلا کواریانس بین 1 و 2) در دو مدل یکسان (با متغیرها، پارامترها و داده‌های مشابه) است که در یک از آن‌ها تنها پارامتر مورد نظر به مقدار معینی (اغلب صفر) ثابت می‌شود و با بررسی معادلات بودن تفاوت کی اسکهور در دو مدل (درجه آزادی 1) می‌توان مشخص کرد که آن پارامتر منفرد در حال آزاد با مقدار تابشده دارای تفاوت معنادار هست با خیر. ساتو و ساریس (1983:83) نشان داده‌اند که چگونه می‌توان، توان آزمون را برای یک پارامتر آزاد در چندین‌ها به‌طور کلیه یا برخی از پارامترها به نقطه مطلوب (80%) نمی‌رسد افزایش حجم نمونه به‌طور واحد مشخصی تا آن‌که آن را به‌طور به‌هم‌بود توان آزمون برای آزمون‌های فرضی صفری که مقدار پارامتر صفر می‌کند یاری دهد. درواقع پایین‌تر بودن توان آزمون از مرز قراردادی نشان‌دهد از ناکافی بودن حجم نمونه تفسیر می‌شود.

بر مبنای این روش ضرورت دارد تا محقق توان آزمون تفاوت کی اسکور را برای یک پارامتر آزاد در چندین‌ها به‌طور کلیه یا برخی از پارامترها به نقطه مطلوب (80%) نمی‌رسد باشد در حالی که برای پارامتری دیگر می‌توان آزاد. همچنین پژوهشگر نیازمند است تا دارای مشخصه‌ای برای ماتریس واریانس/کواریانس یا همبستگی در جمعیت آماری باشد. این مشخصه گلگرایی در مدل‌سازی داده‌های یک مطالعه مقداماتی شکل می‌گیرد. این مشخصه بین می‌کند که ماتریس واریانس/کواریانس یا همبستگی بایستی مبتنی بر یک مطالعه مقداماتی، می‌تواند به عنوان مرجعی از ماتریس عوامل جمعیت آماری فرض شود (براون، 2006:414).

در روش ساتو و ساریس می‌تواند برای یک ماتریس جمعیت آماری فرض شود، با حساب پارامترهای باید بروز ماتریس واریانس/کواریانس است که در این حالت پارامترهای برآورده مشابه با یک پارامتر آزاد مقدار مانند پارامترهای حامل از داده‌های مطالعه مقداماتی است به‌گز اینکه به دلیل معادله همدان پارامترهای ورودی و ماتریس بایستی مبتنی بر یک مطالعه مقدامر باید صفر

1 Specification Error.
2 Reproduced/Implied Covariance Matrix.
خواهد بود. این مدل به عنوان مدل واقعی به عنوان فرضیه یک (H1) در نظر گرفته می‌شود. مدل مفروش در فرضیه صفر نیز کاملاً شبیه به همین مدل است به گزینه که یک پارامتر (پارامتری که محقق مایل است توان آزمون آماری در بررسی تفاوت آن با مقدار مشخص را ارزیابی کند) برابر با مقدار صفر ثابت می‌شود. به این ترتیب با مقایسه مقدار کای اسکوئر برای مدل (H0) به مقدار کای اسکوئر برای مدل آزمون توان آزمون آماری را مورد ارزیابی قرار داد. چنانچه تعدادی کمی شده به موضوع و ترسیم خطوط راهنمایی برای پژوهشگران مورد نظر باشد می‌توان مراحل پنج گانه زیر را برای بهره‌گیری از روش‌‌های اسکوئر ساریس (BRآورد توان آزمون تفاوت کای اسکوئر برای یک پارامتر خاص به منظور تبیین قابل قبول بودن حجم نمونه) تعريف کرد:

1. مرحله اول: BRآورد پارامترهای آزاد مدل تدوین‌شده و تدارک ماتریس واریانس/ کوواریانس با همبستگی پارتوییده.
2. مرحله دوم: استفاده از ماتریس کوواریانس بازتولید‌شده به عنوان ماتریس ورودی و BRآورد مجدد پارامترهای آزاد مدل و در نظر گرفتن آن به عنوان مدل واقعی با مدل بر مبنای فرضیه یک (H1).
3. مرحله سوم: ثابت کردن پارامتر منفرد مورد نظر BRآورد با مقدار صفر و در نظر گرفتن مدل جدید به عنوان فرضیه صفر (H0). در این حالت می‌توان گفت مدلی که در آن کلیه پارامترهای آزاد و توان آزمون آماری است هم‌رتبه با BRآورد آن مدل آزاد و مدل گفت که در آن یک پارامتر به محقق خواهان برآورد توان آزمون تفاوت معناداری آن با مقدار صفر است (و به مقدار صفر نیز ثابت شده است) مدل آشیانشده است. این امکان را فراهم می‌آورد که در این هریک از پارامترهای آزاد یک پرمسبیکتا تعریف کرد و سپس با استفاده از مدیریت مدل‌ها در یک تحلیل با مدل‌های چندگانه (به تعداد مدل مادر و مدل های آشیانشده که در اینجا BRآورد با 16 مدل شامل 15 مدل آشیانشده و 1 مدل مادر) پارامترهای آزاد در مدل‌های آشیانشده (در هر مدل یک پارامتر اصلی) برآورد با مقدار صفر ثابت شوند. در سپاس (3) پارامترهای اصلی شامل کلیه وسایل رگرسیونی (پارامترهای عمده و ضرایب گاما و بتا) با پرمسبیکتا تعیین می‌شود. به منظور ضاکی بیشتر متغیرهای خطا از مدل حذف شده‌اند.
شکل (3) بررسی یکی از پارامترهای اصلی در مدل تدوین شده

4. برآورد مجدد پارامترها در مدل متغیرهای تغییر متغیرهای تغییر (H1) و در نظر گرفتن آن به عنوان مقدار پارامتر غیرمکثی یا NCP ناقص یا غیرمکثی یا NCP پارامترهای غیرمکثی یا ارزهای گیرنده از توزیع های غیرمکثی
امکان محاسبه توان آزمون یا نمایش را فراهم می‌آورد چرا که در واقع «آن ها توزیع های احتمالی هستند که هرکدام یک گزاره یا یک توزیع یا نموده ای استاندارد نظر F، X و یا انتخابی توزیع که تحت محیط فرضیه مقابل یکی مقدار پارامترهای Amos 265:2002»
به‌طور گزارش و در ستون CMIN غیرمکثی یا محاسبه و در ستون CMIN گزارش می‌گردد.

5. محاسبه آزمون برای مقدار پارامتر غیرمکثی بهدست آمده با مقایسه مقداری بحرانی توزیع کای اسکوئر غیرمکثی کیت. میتوان این مقادیر را از جدول مربوط به دست آورده (رجوع کنید به: سارس و استرلز، 1984) و یا آن ها را با استفاده از یک نرم افزار آماری نظیر SPSS محاسبه کرده که در این متن از روش دوم بهره گرفته شده است.

تفاوت کای اسکوئر دو مدل متعادل که پارامتر غیرمکثی از توزیع غیرمکثی کیتی اسکوئر است. توزیع کای اسکوئر غیرمکثی توزیع کای اسکوئر است برای هنگامی که فرضیه صفر غلط است. با استفاده از مقدار پارامتر غیرمکثی توان آزمون بآورود می‌شود.

این مراحل پنج‌گانه در رابطه با مدل معادلی ساختاری مفروض در متن حاضر،
به شرح زیر به انجام رسیده است. لازم به تذکر است که داده‌های گرد آوری‌شده برای بآورود پارامترهای آزاد در مدل، با توجه به میزان مدل توزیع مهر و همکاران (2009)، برای 300 واحد نمونه در قالب پک ماتریس واریانس/
کواریانس به عنوان داده‌های اولیه برای ابزار پارامترها مورد استفاده قرار گرفته است. این ماتریس در پیوست شماره (۱) گزارش شده است.

مرحله اول: برآورد پارامترهای آزاد و تقارن ماتریس واریانس–کواریانس بازتولیدشده (پیوست شماره ۲).

مرحله دوم: برآورد مجدد پارامترها با استفاده از ماتریس بازتولیدشده به عنوان داده‌های ورودی و در نظر گرفتن آن به عنوان مدل واقعی جامعه یا مدل بین‌نیای فرضیه یک (Hi)، (پیوست ۳).

مرحله سوم و چهارم: ثابت کردن پارامتر منفرد با مقدار صفر و در نظر گرفتن مدل به عنوان مدل فرضیه صفر (H0)، برای ۱۵ پارامتر اصلی در مدل این کار و در یک تحلیل با ۱۶ مدل به‌طور همزمان به انجام رسید که نتیجه CMIN آن در جدول (۱) گزارش شده است. مقادیر گزارش‌شده در ستون کای‌اسکوئر مدل مادر و مدل آشیان‌شده را نشان می‌دهد منعکس‌کردن مقادیر پارامتر غیرمرکزی است. مقادیر بزرگ‌تر آنها با مقادیر بزگ‌تر برای شاخص‌های تطبیقی (شامل TLI و RFI و NFI) همراه است که در نهایت به توان آماری بالاتری به هنگام آزمون فرضیه‌ها صفر خواهد انجامید.

مرحله پنجم: محاسبه توان آزمون برای مقادیر پارامتر غیرمرکزی به دست آمده. انجام این مرحله با استفاده از نرم‌افزار SPSS قابل انجام است. به این منظور Chi-لازم است که متغییر به نام های DF، Chi-برای با شرایط شدید. مقادیر ۸۴/۳، مقدار با ۱ در نظر گرفته می‌شود. مقادیر پارامتر غیرمرکزی براساس محاسبات مرحله چهارم از ستون CMIN به دست می‌آید. محاسبه توان آزمون با استفاده از رابطه زیر امکان‌پذیر است.

جدول (۱) برآورد پارامترهای غیرمرکزی بر مبنای مقایسه مدل‌های آشیان‌شده و مدل مادر در یک تحلیل با مدل‌های جدیدشان

\[\text{Power}=1-\text{NCDF. CHISQ (Chi, DF, NCP)} \]

1 \(\text{tF demroN} \).
2 \(\text{tF latnemercln} \).
3 \(\text{tF evitaleR} \).
4 \(\text{siwel-rekuC} \).
5 \(\text{هزار یک پارامتر در مدل ثابت می‌شود یک واحد به درجه آزادی مدل افزوده می‌شود. مقدار ۸۴/۳ با مقادیر کای‌اسکوئر برای درجه آزادی ۱ و اکتماب خطای نوع اول با رابطه ۰۵/۰ است. این مقادیر برای محاسبه توان آزمون به‌طور ثابت در ماتریس داده‌ها برای انجام محاسبات وارد می‌شوند.} \)
جدول (2) پرآورده توان آزمون تفاوت کای اسکوئر برای پارامترهای اصلی در مدل تدوین شده

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>CMIN</th>
<th>P</th>
<th>NFI Delta-1</th>
<th>IFI Delta-2</th>
<th>RFI rho-1</th>
<th>TLI rho2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nested-P1</td>
<td>1</td>
<td>447.274</td>
<td>.000</td>
<td>.239</td>
<td>.247</td>
<td>.311</td>
<td>.324</td>
</tr>
<tr>
<td>Nested-P2</td>
<td>1</td>
<td>140.507</td>
<td>.000</td>
<td>.075</td>
<td>.078</td>
<td>.098</td>
<td>.102</td>
</tr>
<tr>
<td>Nested-P3</td>
<td>1</td>
<td>184.427</td>
<td>.000</td>
<td>.099</td>
<td>.102</td>
<td>.128</td>
<td>.134</td>
</tr>
<tr>
<td>Nested-P4</td>
<td>1</td>
<td>225.372</td>
<td>.000</td>
<td>.120</td>
<td>.124</td>
<td>.157</td>
<td>.163</td>
</tr>
<tr>
<td>Nested-P5</td>
<td>1</td>
<td>64.884</td>
<td>.000</td>
<td>.035</td>
<td>.036</td>
<td>.045</td>
<td>.047</td>
</tr>
<tr>
<td>Nested-P7</td>
<td>1</td>
<td>320.858</td>
<td>.000</td>
<td>.171</td>
<td>.177</td>
<td>.223</td>
<td>.233</td>
</tr>
<tr>
<td>Nested-P8</td>
<td>1</td>
<td>34.629</td>
<td>.000</td>
<td>.018</td>
<td>.019</td>
<td>.024</td>
<td>.025</td>
</tr>
<tr>
<td>Nested-P9</td>
<td>1</td>
<td>39.133</td>
<td>.000</td>
<td>.021</td>
<td>.022</td>
<td>.027</td>
<td>.028</td>
</tr>
<tr>
<td>Nested-P10</td>
<td>1</td>
<td>170.904</td>
<td>.000</td>
<td>.091</td>
<td>.094</td>
<td>.119</td>
<td>.124</td>
</tr>
<tr>
<td>Nested-P11</td>
<td>1</td>
<td>26.854</td>
<td>.000</td>
<td>.014</td>
<td>.015</td>
<td>.019</td>
<td>.019</td>
</tr>
<tr>
<td>Nested-P12</td>
<td>1</td>
<td>18.009</td>
<td>.000</td>
<td>.010</td>
<td>.010</td>
<td>.013</td>
<td>.013</td>
</tr>
<tr>
<td>Nested-P13</td>
<td>1</td>
<td>7.617</td>
<td>.006</td>
<td>.004</td>
<td>.004</td>
<td>.005</td>
<td>.006</td>
</tr>
<tr>
<td>Nested-P14</td>
<td>1</td>
<td>10.635</td>
<td>.001</td>
<td>.006</td>
<td>.006</td>
<td>.007</td>
<td>.008</td>
</tr>
<tr>
<td>Nested-P15</td>
<td>1</td>
<td>1.111</td>
<td>.292</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
</tr>
</tbody>
</table>

جدول (3) پرآورده توان آزمون تفاوت کای اسکوئر برای پارامترهای اصلی در مدل تدوین شده

<table>
<thead>
<tr>
<th>parameter</th>
<th>power</th>
<th>df</th>
<th>chi</th>
<th>ncp</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر 1</td>
<td>1 /00</td>
<td>1</td>
<td>3 /84</td>
<td>447/27</td>
</tr>
<tr>
<td>پارامتر 2</td>
<td>1 /00</td>
<td>1</td>
<td>3 /84</td>
<td>140/51</td>
</tr>
<tr>
<td>پارامتر 3</td>
<td>1 /00</td>
<td>1</td>
<td>3 /84</td>
<td>184/43</td>
</tr>
</tbody>
</table>
نتایج منعکس‌شده در متن مربوط به توان آزمون (Power) نشان می‌دهد که حجم نمونه در نظر گرفته شده (n=300) در رابطه با چهارده پارامتر از پانزده پارامتر اصلی و آزاد تعريفشده در مدل از توان خروجی بهره‌بردار است. تنها در رابطه با آخرین پارامتر (P: 15) تون آزمون به حداقل قابل قبول (0/8) نرسیده است و در رابطه با یک پارامتر (P: 13) نیز نزدیک به مرز قابل قبول است. چنین وضعیتی به معنای آن است که پژوهشگر نیاز دارد تا برای رسیدن به توان لازم برای کلیه پارامترها، حجم نمونه خود را افزایش دهد از طرف دیگر با توجه به اینکه تنها آزمون تفاوت میان‌داده‌ها در پارامتر با مقدار صفر از حداقل توان برخورد نیست ممکن است پژوهشگر ترجیح دهد با ذکر این موضوع در محدودیت‌های پژوهش به همین مقدار از حجم نمونه اکتشاف نماید، با توجه به اینکه در برآورد حجم نمونه علاوه بر توان آزمون، دقت برآورد پارامترها نیز از اهمیت برخورد دارد است. مناسب است تا بررسی روش مونت کارلو که بر مبنای برآورد دقت پارامترها قرار دارد تصمیم نهایی در

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>n</th>
<th>37 / 84</th>
<th>225 / 40</th>
<th>پارامتر</th>
<th>5</th>
<th>48 / 84</th>
<th>64 / 88</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>3 / 84</td>
<td>320 / 86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3 / 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
مورد حجم نمونه اخذ شد.

روش مونت کارلو

روش مونت کارلو امکان دقت پارامترهای برآوردشده را برای یک مدل خاص با حجم نمونه مشخص فراهم می‌آورد. مطالعات مونت کارلو در پژوهش مدل‌سازی برای مطالعه رفتار برآوردگرهای آماری و آماره‌های آزمون، تحت شرایط متغیری که پژوهشگر دستکاری می‌کند، نظیر حجم نمونه، درجه بدندوینی مدل و درجه غیرنرمال بودن داده‌ها مورد استفاده قرار می‌گیرد. موتون و موتون (2002) نشان دادند که روش مونت کارلو روی می‌توان برای تعیین حجم نمونه مورد استفاده قرار داد.

روش مونت کارلو بر مبنای نمونه‌گیری‌های متعدد با جایگذاری از نمونه‌های قرار داد. آنچه که به نام خودگردانسازی خوانده می‌شود. با هربار انجام نمونه‌گیری کلیه پارامترهای آزاد در مدل محاسبه شده و در نهایت پس از آخرین نمونه‌گیری انجام شده، متوسط پارامترهای برآوردشده به عنوان برآورد آن گزارش می‌شود. تفاوت میان پارامتر برآوردشده در نمونه‌های مونت کارلو، معمولاً برای اندازه‌گیری دقت برآورد پارامتر است. استفاده از روش مونت کارلو عمدتاً به دلیل نقاط ضعیف است که در روش ساتورن-ساریس وجود دارد. براون (2006:420) یکی از این نقاط ضعف را آن می‌داند که در این روش دقت برآورد پارامترها مورد توجه قرار نمی‌گیرد.

جدول (2) برآورد از پارامترها با استفاده از روش مونت کارلو

<table>
<thead>
<tr>
<th>Bias-SE</th>
<th>Bias</th>
<th>Mean</th>
<th>SE-SE</th>
<th>SE</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 /003</td>
<td>0 /003</td>
<td>0 /745</td>
<td>0 /002</td>
<td>0 /036</td>
<td>Etal® Ksil</td>
</tr>
<tr>
<td>0 /007</td>
<td>-0/009</td>
<td>0 /390</td>
<td>0 /005</td>
<td>0 /098</td>
<td>Etal2® Etal</td>
</tr>
<tr>
<td>0 /006</td>
<td>0 /005</td>
<td>0 /516</td>
<td>0 /004</td>
<td>0 /090</td>
<td>Etal2® Ksil</td>
</tr>
<tr>
<td>0 /014</td>
<td>0 /058</td>
<td>0 /433</td>
<td>0 /010</td>
<td>0 /198</td>
<td>Etal3® Ksil</td>
</tr>
<tr>
<td>0 /012</td>
<td>0 /034</td>
<td>-0/120</td>
<td>0 /009</td>
<td>0 /172</td>
<td>Etal &Etal3</td>
</tr>
<tr>
<td>0 /003</td>
<td>-0 /004</td>
<td>-0 /404</td>
<td>0 /002</td>
<td>0 /019</td>
<td>Eta3® Eta2</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>0 /001</td>
<td>-0 /001</td>
<td>0 /916</td>
<td>0 /001</td>
<td>0 /013</td>
<td>X1® Ksil</td>
</tr>
<tr>
<td>0 /001</td>
<td>0 /000</td>
<td>0 /914</td>
<td>0 /001</td>
<td>0 /012</td>
<td>X2® Ksil</td>
</tr>
<tr>
<td>0 /002</td>
<td>0 /002</td>
<td>0 /631</td>
<td>0 /002</td>
<td>0 /035</td>
<td>X3® Ksil</td>
</tr>
<tr>
<td>0 /002</td>
<td>0 /000</td>
<td>0 /697</td>
<td>0 /002</td>
<td>0 /033</td>
<td>X4® Ksil</td>
</tr>
<tr>
<td>0 /004</td>
<td>-0 /003</td>
<td>0 /419</td>
<td>0 /003</td>
<td>0 /052</td>
<td>Y4® Eta2</td>
</tr>
<tr>
<td>0 /004</td>
<td>0 /008</td>
<td>0 /826</td>
<td>0 /003</td>
<td>0 /060</td>
<td>Y5® Eta2</td>
</tr>
<tr>
<td>0 /003</td>
<td>0 /002</td>
<td>0 /371</td>
<td>0 /002</td>
<td>0 /049</td>
<td>Y9® Eta3</td>
</tr>
<tr>
<td>0 /004</td>
<td>0 /000</td>
<td>0 /348</td>
<td>0 /003</td>
<td>0 /051</td>
<td>Y8® Eta3</td>
</tr>
<tr>
<td>0 /002</td>
<td>0 /002</td>
<td>0 /877</td>
<td>0 /001</td>
<td>0 /021</td>
<td>Y7® Eta3</td>
</tr>
<tr>
<td>0 /002</td>
<td>-0 /002</td>
<td>0 /669</td>
<td>0 /002</td>
<td>0 /035</td>
<td>Y6® Eta3</td>
</tr>
<tr>
<td>0 /002</td>
<td>0 /001</td>
<td>0 /898</td>
<td>0 /001</td>
<td>0 /025</td>
<td>Y1® Eta1</td>
</tr>
<tr>
<td>0 /002</td>
<td>-0 /001</td>
<td>0 /787</td>
<td>0 /001</td>
<td>0 /030</td>
<td>Y2® Eta1</td>
</tr>
<tr>
<td>0 /003</td>
<td>0 /001</td>
<td>0 /472</td>
<td>0 /002</td>
<td>0 /047</td>
<td>Y3® Eta1</td>
</tr>
</tbody>
</table>

شباهت روش مونت کارلو و ساتورا ساریس در این است که در اینجا نیز لازم است مدیل به عنوان مدل فرض شود که به عنوان مدل واقعی جمعیت آماده در نظر گرفته می‌شود. این مدل بر مبنای داده‌های مقادیری برآورد می‌شود. روش مونت کارلو بر حسب گرفتن نمونه‌های متعددی است که به طور تصادفی و بر مبنای مقادیر جمعیت آماده از مدل توزیع‌شده تولید می‌شود. در هربار تولید اعداد تصادفی، پارامترها، غلظت‌های میزان و آماره‌ها برای محاسبه محاسبه می‌شود و در نهایت متوسط این مقادیر برای کلیه دفعاتی که اعداد تصادفی تولید شده‌اند (مثلاً 1000 یا 10000بار) محاسبه می‌شود. این مقادیر متوسط، برای تعیین دقت
به کار می‌رود.

موتیم و مونتیم (2002) برای تعیین حجم نمونه پیشنهاد کرده‌اند که اریب‌تارهای پارامترهای از 10/0 بهر اقیمت فراکس‌فراتر نرود و البته برای پارامترهایی که تمرکز ویژه‌ای برای تحلیل توان آزمون وجود دارد این مقدار 0/05 فراکس‌فراتر نرود.

این بررسی پارامترهایی برآوردشده بر مبنای بهره‌گیری از روش مونت کارلو نشان می‌دهد که حجم نمونه مورد مطالعه تقیی‌بأ به برآورد قابل قبول به لحاظ دقت و براساس معیارهای ملی و سیاست‌های می‌تواند مورد استفاده قرار گیرد. این بحث نسبت به استقلال یکی از پارامترهای گاما (Ksi 1 A Eta 3) که اریب‌تارهای آن اندکی بیش از 0/0 به‌دست آمده است و البته یکی از پارامترهای اصلی مدل نیز محسوب می‌شود نشان می‌دهد که حجم نمونه 300 واحد را در این مطالعه در مجموع می‌توان قابل قبول تلقی کرد.

بحث و نتیجه‌گیری

برآورد حجم نمونه به‌اندازه‌ای که بتواند به برآورد پارامترهای جمعیت آماری با استفاده از آماره‌های نمونه‌ای به اطمینان گامبری نسبت به مقاله که جستجوی تحلیل‌های کمی از دغدغه‌های پژوهشگران اجتماعی بوده است. می‌توان گفت هرچه تحلیل‌های کمی از حالت تلمبه‌گیری به حالت چندمتغیره جزئیاتی که برآورد حجم به‌همه‌نامه پیچیده‌تر می‌شود، چنین به نظر می‌رسد که در اغلب کتاب‌های روش‌شناسی به زبان فارسی عمدتاً بر نوعی تکرار است که پژوهشگر خواهان برآورد یک نسبت با یک میانگین است و کمتر به برآورد حجم نمونه در تحلیل‌های چندمتغیره پرداخته است.

ادبيات نمونه‌گیری برای مدل‌سازی معادله‌های انتقال، چه آنچه در کتاب‌ها آورده شده است و هرچه در مقاله‌های پژوهشی نقد و تحلیل که بالا استفاده پژوهشگران از معیارهای کلی است که معمولاً در واریانس اول ممکن است برای این تحلیل چندمتغیره ساده به نظر آید اما از طرفی این معیار ریشه در شیوه‌های متوسط مطالعات انجام شده توسط افرادی توزیع بومی می‌باشد (1982) اندروز و گریبنگ (1984) و فرگنر و بومسما (1998) که به شکل‌گیری این معیارهای کلی انجام داده‌اند.

در متن حاضر ضمن مرور بر معیارهای کلی برآورد حجم نمونه، نشان داده شد که چگونه می‌توان از روش‌های ساده‌تری - مانند برای توان آزمون فرضیه‌های صفر و مونت کارلو با تمرکز بر دقت برآورد پارامترهای از کنای حجم نمونه دست دهد. با ارائه یک مثال که علاوه بر تعداد پارامترها دارای مدل‌های عاملی فرآیندی بود (مدل‌های عاملی با 1 یا 2 عبارت) و با توجه به معیارهای معرفی‌شده توسط خرس و همکاران، 300 واحد نمونه مورد مطالعه قرار گرفتند و استفاده از دو روش مذکور به نتایج قابل قبولی در رابطه با این حجم نمونه انجام شد. بی‌کلیه از نتایج حاصل آن است که با استفاده از یک نمونه کوچک مقدماتی می‌توان به برآورد پارامترها دست داشت و سپس با استفاده از تغییر حجم نمونه در ماتریس کوواریانس مشاهده شده نتایج حاصل
از روش‌های ساتوران- سارایس و همین کارلو را تحلیل کرد. مقاله حاضر بر مطالعات تلگرتوهی تمرکز داشت. مطالعاتی که همراه یا بهره گیری از متغیرهای تعیین‌کننده مقوله‌ای باشند و یا مدل‌های میانگین‌های ساختاری که مقایسه‌های چندگره‌ای را ضروری می‌دانند می‌تواند جمع‌نامه را با توجه به چگونگی موارد مقایسه به طور قابل توجهی افزایش دهد. علاوه بر آن، چنین محقق خواهان آن باشد که از طریق دو نمی‌کرده که تصادفی نمود مطالعه به یکی از دقت‌های پارامترهای برآوردشده دست زده همچون یک مطالعه دوگره‌ای نیاز به افزایش جمع‌نامه که به مبنای تحلیل تلگرتوهی به دست آورده است.

در نهایت متن حاضر با ذکر این نکته به پایان می‌رسد که تحلیل مبنای بر مد سازی معادله ساختاری نیازمند تدارک مجموعه از پیش‌بیاگرایی‌های توان به نتایج حاصل از تحلیل اطمنان داشت. با این حال همچنین نرم‌افزارهای پیشرفته تر Shomaximum و رایانه‌ای مشاهده شده، انتساب داده‌های منقوص با بهره‌گیری از روش‌های مناسب و در نهایت برآورد جمع‌نامه برای دستیابی به توان حداکثر در آزمون فرض‌های صفر و دقت حداکثر در برآورد پارامترها آزاد در مدل از جمله مواده مستند که هرکدام نیازمند بحث و بررسی در مجموعه‌ای از مقاله می‌باشد به موجب مجزا و با ارتباط با یکدیگر است. متن حاضر تلاش می‌رود اندک برای یافتن یک ادعا مباحثی است.

منابع

ajoqelo, مسعود و زاهدی، محمدجواد (1384)، «برزی اعتماد اجتماعی و عوامل مؤثر بر آن در بین ساکنان شهر زنجان»، مجله جامعه‌شناسی ایران، دوره ششم، شماره 4، صفحات 92-125.

چلنی، مسعود و رسول‌زاده اقدم، سمیه (1381)، «آثار نظم و تشکیل خانواده بر خشونت عليه کودکان»، مجله جامعه‌شناسی ایران، دوره چهارم، شماره 2، صفحات 26-54.

چلنی، مسعود و امیرکاظمی، مهدی (1383)، «تحلیل چندسطحی انواع اجتماعی»، مجله جامعه‌شناسی ایران، دوره پنجم، شماره 2، صفحات 31-33.

Amos Qasmii، وحید. (1389)، مدل‌سازی معادله ساختاری در پژوهش‌های اجتماعی با کاربرد Graphics، تهران: جامعه‌شناسان.

شوماخ، رناالد، ویووکس، ریچارد جی. (1388)، مقدمه بر مدل‌سازی معادله ساختاری، ترجمه ویژه قاسمی، تهران: جامعه‌شناسان.

کلندر، خلیل (1388)، مدل‌سازی معادله‌های ساختاری در تحقیقات اجتماعی - اقتصادی، تهران: مهندس مهندسین طراحی و منظر.

هومن، حیدرعلی (1384)، مدل‌سازی معادله‌های ساختاری با کاربرد برآورد نرم‌افزار لیزر، تهران: سمت.

Boomsma, A., (1982), The robustness of LISREL against small sample sizes in factor analysis models, In K. G. Joreskog and H Wold (Eds),